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Synthesis of a Carbocyclic Oxetanocin Using Photocycloaddition
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All-cis-3-acetoxycyclobutane-1,2-dicarboxylate 4 was
provided from a photochemical endo-[2+2]cycloadduct between
maleic anhydride and vinyl acetate, and 4 was coupled with
adenine and reduced with LiAlHy to give a carbocyclic oxetanocin
6.

Some carbocyclic oxetanocins exibit very wide antiviral and
potent anti-HIV activities.! Several synthetic methods for the
oxetanocins have been reported.2 Such studies are quite
important as a scientific challenge against AIDS.3 Previously,
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multi-step syntheses of a carbocyclic oxetanocin using
photocycloaddition have been reported.?t  Here we wish to
describe an improved and facile method to synthesize a similar
oxetanocin analogue by way of a much shortened route
employing the photocycloaddition of maleic anhydride with vinyl
acetate as a key reaction.

Photoirradiation of maleic anhydride (72 mmol), vinyl acetate
(312 mmol), and xanthone (14 mmol) in acetonitrile (500 ml)
with a 400 W high-pressure mercury lamp through a Pyrex filter
gave a methyl ester (3, 44% yield) of 1:1 cycloadduct 1 after
treatment with methanol and column chromatography as shown in
Scheme 1. Anhydride 1 was rather unstable and, when the
reaction mixture was treated with water and washed with
chloroform, the dicarboxylic acid 2 was obtained from the
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aqueous layer as crystals (40%). Theester 3 was converted to
4 by the use of diazomethane (87%). The all-cis configuration of
4 was confirmed by the IH NMR data# and NOE experiments.
Thus, irradiation of 2-H proton caused signal enhancements of
4.7, 6.2, and 2.2% for 1-H, 3-H, and one 4-H, respectively.
This is also in agreement with the endo-geometry in 1, which was
theoretically predicted from MO calculations (Figure 1).5 The
orbital interactions by HSOMO-LUMO and LSOMO-HOMO n-1
overlapping, including second-order interactions, and electrostatic
interactions between maleic anhydride and vinyl acetate are
apparently favorable for the formation of endo-adduct 1
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Figure 1. Estimated energies and cofficients of maleic
anhydride and vinyl acetate and their
interactions by PM3-CI method.

The next step is bonding between 4 and adenine (Scheme 2).
A mixture of 4 (23.5 mmol), adenine (27.5 mmol), potassium
carbonate (27.5 mmol) and dry DMF (200 ml) was stirred at 90 C
for 12 h. After evaporation of the solvent, extraction with
chloroform and recrystallization from dichloromethane-ethanol
afforded pure 5 (mp 195-196 °C, 31%). The all-trans
configuration of 5 was mainly inferred by the IH NMR data
following NOE experiments.4 Irradiation of 2'-H gave no
enhancements on 3'-H. That of 1'-H gave 3.2 and 3.0%
enhancements on 3'-H and one of 4'-H, respectively, but small
(0.8%) enhancement on 2'-H signal. The detailed mechanism for
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the addition of adenine leading to the stable all-trans compound is
not clear at present. Since 2-H of 4 should be highly acidic due
to methoxycarbonyl groups, the reaction would have proceeded
by way of elimination-addition process via cyclobutene
intermediate. A mixture of 4, potassium carbonate and dry DMF ,
however did not show elimination for the cyclobutene
intermediate at 90 °C. Added adenine might have catalyzed the
elimination and proceeded following Michael-addition. Another
possibility is a direct SN2 type reaction at C-3, but this seems less
likely. The alkaline conditions employed in the present reaction
could cause the cis-trans epimerization at C-3, as has been
reported for a similar dimethylcyclobuiene derivative.6

The mixture of 5 (4.48mmol), LiAlHy (27.4 mmol) and dry
THF (90 ml) was stirred at room temperature and refluxed for 5
h, and treated with water. The white precipitate was filtered and
washed with methanol. The filtrate was evaporated and the
residue gave a white solid (6) (mp 187-189 °C, 77%), after
Soxhlet extraction with diethyl ether. The 'H NMR data? was
identical to that of carbocyclic oxetanocin A in the literature.22
The all-trans configuration in the cyclobutane ring was confirmed
by NOE data in the D20 solution. Thus, irradiation of 1'-H
proton caused signal enhancements of 5.1, 7.4, 7.2, and 0.0%
for4'-H', 3'-H, 2'-CHj, and 4'-H, respectively.
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